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Abstract
A self-consistent environment-dependent (SC-ED) tight binding (TB) method
for hydrocarbons that was developed for quantum transport simulations is
presented. The method builds on a non-self-consistent environment-dependent
TB model for carbon (Tang et al 1996 Phys. Rev. B 53 979) with parameters
added to describe hydrocarbon bonds and to account for self-consistent
charge transfer. The SC-EDTB model assumes an orthogonal basis set.
Orthogonality is a key element for adapting the SC-EDTB scheme to transport
problems because it substantially increases the efficiency of the Newton–
Raphson algorithm used to accelerate self-consistency convergence under non-
equilibrium conditions. Compared to most existing TB schemes the SC-EDTB
scheme is distinctive in two respects. First, self-consistency is added through
the exact evaluation of Hartree and linear expansion of exchange integrals.
All Hamiltonian elements belonging to the same atom are affected by charge
transfer, not just the diagonal elements. The second distinction is the choice of
SC-EDTB parameters; they were fitted to Mulliken populations and eigenvalue
spectra rather than energies or elastic properties. The former are directly
related to the conductivity and potential profile, which are essential for transport
simulation. No two-centre repulsive term parametrization was performed. The
functionality of the method is exemplified by computing I–V curves, non-
equilibrium potential profiles and current density for a resonant tunnelling
device.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Techniques for quantum transport simulation [1–7] are very important for the development of
molecular electronics [8]. Many of these techniques are based on a non-equilibrium Green
function (NEGF) approach [1, 2], and electronic structure methods (ESM). The majority of
reported transport simulations can be divided into two categories according to the ESM being
employed. The first category is based on unsophisticated tight-binding (TB) schemes that
are computationally efficient but that lack precision [2, 3]. The second category uses well
established density functional theory (DFT) codes [1, 5–7] (e.g. Gaussian), which were not
created specifically for transport problems,and hence are constrained to small and well behaved
systems. Presented in this paper is an ESM that is optimized for use with NEGF algorithms.
The choice of ESM is stipulated by the requirements described below.

Transport problems usually involve systems that are partially or completely metallic.
A voltage drop in a metal is a purely non-equilibrium effect and, in general, cannot be
approximated by an applied external field. A self-consistent NEGF approach must be used
to obtain the correct voltage distribution in a metallic system under an external bias. Hence
self-consistency is the first requirement for the ESM of our choice.

It is impossible to employ any of the existing O(N) algorithms for evaluating the non-
equilibrium density matrix because the energy functional minimization can be used only for
the ground state solution. In the NEGF approach the density matrix is computed by contour
integration of Green matrices. Each sampling point on the integration contour is obtained
through matrix inversion, which is an O(N3) operation (N is the number of orbitals in the
system). Thus, the number of operations required by each self-consistency iteration is O(N3)

times the number of sampling points. Contour integration is parallelizable, though the number
of sampling points usually overwhelmingly exceeds the number of processors. O(N3) scaling
imposes a severe restriction on the ESM candidate; if reasonably large systems (∼100–500
atoms) are targeted, the ESM should use a minimal basis set.

Simple charge mixing often does not lead to a converged self-consistent solution,
especially in metals. To ensure fast and guaranteed convergence towards self-consistency,
special algorithms should be engaged. However, most convergence acceleration algorithms
(see [9] and the discussion therein) are based on the correspondence of a self-consistent solution
to minimum total energy. Obviously this property cannot be used in non-equilibrium problems.
On the other hand, convergence acceleration methods that employ the derivative of the output
charge density with respect to input charge density (e.g. Broyden [10] or Newton–Raphson [11])
are still valid and can be applied to non-equilibrium cases. The size M of the derivative matrix
A equals the number of unique atomic orbital products contributing to the total electron density.
M is the number of {α, β} pairs (α � β) such that for some r

ϕα(r)ϕβ(r) �= 0. (1)

Possible values of M lie in the interval {N, N(N + 1)/2}. The Broyden method computes
the derivative matrix iteratively. The number of iterations required to obtain the precise value
of A is M . Thus the total number of operations per sampling point required to achieve self-
consistency is O(M N3). In the Newton–Raphson algorithm the exact value of the matrix
A is computed at each iteration. The total cost of computing A using the Newton–Raphson
algorithm in conjunction with an NEGF formalism is O(M3) + NSPO(M2), where NSP is the
number of sampling points on the integration contour. The number of iterations required
to achieve self-consistency N ISC usually varies between 5 and 15. The total number of
operations for the Newton–Raphson algorithm is N ISC(NSP(O(N3) + O(M2)) + O(M3)).
If M ∼ N the Newton–Raphson algorithm is preferred over the Broyden method. The



A self-consistent tight binding model for hydrocarbon systems 6853

smallest possible value of M = N is achieved when condition (1) is satisfied only for
α = β. We term this approximation ‘diagonal’. In the diagonal approximation atoms
cannot produce dipole moments, and act almost like spherical charges. The next, more
advanced degree of precision, which we term ‘block-diagonal’, is achieved when condition (1)
is satisfied only if orbitals α and β belong to the same atom. In this case an atom can
create a dipole moment by superposition of s- and p-type atomic orbitals. This property
is very important for a correct description of the potential produced by asymmetrical or
dangling bonds. Under the minimal basis set assumption every carbon atom has four
orbitals. Under the block-diagonal approximation there are ten unique {α, β} pairs per
carbon atom for which condition (1) is satisfied. For systems composed of carbon atoms
M = 2.5N , and the total workload for evaluating matrix A increases by a factor of 2.53 ∼= 16
compared to the diagonal approximation. The total number of operations towards self-
consistency is N ISC((NSP + 16)O(N3)). The next degree of precision is achieved when
equation (1) is satisfied only if α and β belong either to the same atom or to the nearest
neighbours. In a diamond lattice M = (2.5 + 4 × 4)N . The total number of operations
required for self-consistency is N ISC((NSP + (18.5)3)O(N3)). The number of sampling
points NSP in the example presented in section 5 gradually increases from 50 to 600 as the
solution approaches self-consistency. This number is substantially less than (18.5)3 ∼= 6332.
Additionally, it becomes problematic to store matrix M even for moderate-size (e.g. 300 atoms)
systems.

The block-diagonal approximation seems a reasonable compromise between the quality
of the charge density description and the computational workload. We adopt it as an additional
constraint for the ESM being constructed. The block-diagonal approximation corresponds to
an orthogonal overlap matrix. However, it should be noted that the term ‘orthogonal basis set’
is not exactly applicable here. If ϕα and ϕβ belong to different atoms, the orthogonal basis
set requirement means that

∫
ϕα(r)ϕβ(r) dr = 0, while the block-diagonal approximation

assumes that ϕα(r)ϕβ(r) = 0 for any r .
Besides self-consistency and performance issues an adequate description of electron

potential, energy spectra, and electron density response to applied fields are of high priority for
a desired ESM. Special care should be taken to accurately convey energy spectra in the vicinity
of the Fermi level because that energy region is the most important for electronic transport.
These tasks can be viewed as a constrained optimization problem, where the constrains are a
minimal orthogonal basis set and the block-diagonal approximation. Therefore the choice for
ESM is limited to either an orthogonal minimal basis set DFT or self-consistent TB.

In 1996 Ho and coworkers introduced a non-self-consistent environment dependent TB
(EDTB) scheme for carbon [12]. ‘Environment dependent’ means that the hopping matrix
elements depend not only on the distance between the two atoms on which basis functions are
centred, but also on the arrangement of neighbouring atoms. Sometimes it is convenient to
view the TB method as a simplified DFT in which the matrix elements rather than the atomic
orbitals are specified. From this standpoint the EDTB concept is analogous to a DFT scheme
that accounts for three- and four-centre integrals, and with atomic orbitals adjusting to the
atomic environment. This concept seems to produce more transferable results than a fixed
orthogonal minimal basis set DFT under the block-diagonal restriction. The EDTB scheme,
which is briefly discussed in section 2, is the starting point for developing the self-consistent
method described in section 3.

The remainder of this paper is organized as follows. Section 4 contains a description of the
Newton–Raphson method joined with the NEGF approach. Section 5 describes an application
of the self-consistent EDTB scheme to the simulation of current density and I–V curves for a
resonant tunnelling device.
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In the present paper we are not interested in total energies and atomic forces (e.g. for
a molecular dynamics simulation); thus the self-consistent EDTB parametrization does not
include these quantities in the fitting scheme.

2. EDTB scheme

The traditional feature of most TB methods is a two-centre Hamiltonian matrix parametrization,
which implies the neglect of three- and four-centre integrals as well as nonlinearities of
the exchange–correlation potential [13]. This means that the contribution of the molecular
potential V (r) to the Hamiltonian matrix element Hαβ is restricted to 〈ϕα|Vi(r)|ϕβ〉, where
either atomic orbital ϕα or ϕβ belongs to the i th atom producing potential Vi (r). To augment
the contributions with index i belonging to atomic sites other than those on which ϕα or
ϕβ are centred, the original EDTB uses a screening function Sαβ and a scaling function
Rαβ that transform the conventional form for two-centre Hamiltonian matrix elements as
Hαβ(rαβ) → Hαβ[Rαβ(rαβ)](1 − Sαβ). The parameterized functions Sαβ and Rαβ depend
on the positions of neighbour atoms, and are designed to account for the influence of atomic
environment on two-centre Hamiltonian matrix elements. For example, when no other atoms
are in the vicinity of the line connecting ϕα or ϕβ , Sαβ is zero. When an extra atom appears
between ϕα and ϕβ the value of Sαβ increases because the extra atom screens the two-centre
interaction, and the contribution to Hαβ then comes primarily from the three-centre integral.

The function Rαβ has four parameters, and Sαβ uses separate sets of four parameters for
each type of hopping integral, allowing a good fit to band structures from DFT calculations
for six lattice types with atomic coordinations that vary from 2 to 12. Fitting to multiple band
structures helps to ensure that the EDTB method is applicable to non-periodic systems with
a variety of coordination numbers and is more transferable than conventional TB schemes.
For example, an indirect bandgap for diamond versus a direct band gap given by the Xu et al
parametrization [14] is achieved with the EDTB method.

The EDTB model was not the first attempt to include three-centre integrals in a TB scheme.
In 1989 Sankey and Niklewski introduced a parameter-free DF-TB scheme that is essentially
a minimal non-orthogonal basis set DFT calculation, but with matrix elements precalculated
on a coarse grid [15]. Interpolation between grid points is used to evaluate matrix elements for
the given set of distances and angles. Frauenheim and co-workers introduced a similar DF-TB
scheme based on two-centre integrals [16].

The main advantage of the DF-TB schemes over other TB approaches is that in principle
they do not require parameter fitting. However, the DF-TB models use a fixed atomic orbital
basis, while the EDTB method accommodates the ‘orbitals’ to atomic environments,a potential
advantage in terms of the transferability of the scheme for describing electronic states of carbon
in different bonding configurations.

3. SC-EDTB scheme

To further expand the transferability and functionality of TB schemes, a number of methods
have been implemented that introduce self-consistency into TB electronic states (see [13] for
a review). Historically, most of these involved modifications to existing non-self-consistent
schemes. For example, Frauenheim et al enhanced a two-centre DF-TB approach [16] by
adding self-consistent (SC) terms [17] and spin polarization [18] that could be used with an
O(N) scaling scheme [19]. Similarly, SC versions of Sankey’s multicentre DF-TB scheme [20],
as well as Halley and coworker’s TB approach [21, 22], have been introduced, with the latter
adding spin-polarized terms to study magnetic systems [23].
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3.1. Formalism

In this paper an SC modification to the EDTB scheme for carbon is introduced that allows
charge transfer and applied fields to be modelled. In this approach, which we term the SC-
EDTB method, the Hamiltonian matrix H is composed of two parts, the original EDTB matrix
H 0, and SC corrections �H . The latter accounts for charge transfer between constituent
atoms, and is supposed to be zero for periodic structures for which the original non-SC EDTB
parametrization was made. To be consistent with its initial implementation, the EDTB should
be extended to include self-consistency by using a DF-based approach analogous to [16, 21, 24]
but for a basis set that is adjustable to different atomic environments. However, we approach
the problem in a less efficient, though simpler manner and use an environment independent
basis to compute �H .

Suppose that the EDTB method was derived as a non-SC DF-TB, i.e. H 0 matrix elements
were obtained from applying a Hamiltonian operator to atomic orbitals ϕζ (r) rather than from a
fitting procedure. In that case for some periodic reference structure, described by Hamiltonian
H 0ref, we can construct the charge density ρref(r). A small deviation of δρ(r) from ρref (r)

changes the matrix elements of H 0ref by

�Hα,β =
∫

ϕα(r)

[∫
δρ(R)

|r − R| dR + �Vxc(r)

]
ϕβ(r) dr. (2)

Here �Vxc is the change in the exchange–correlation potential associated with δρ(r). �Vxc is
approximated by linear expansion of exchange component Vex = −ρ1/3(3/π)1/3:

�Vex(r) ≈ (∂Vex(ρ)/∂ρ)ρ=ρ(r)ref δρ(r). (3)

If the block-diagonal approximation is assumed, �H has a block-diagonal structure with 4×4
and 1 × 1 blocks corresponding to carbon and hydrogen atoms, respectively.

Equation (2) may be used to add a charge transfer capability, and hence self-consistency,
to any TB scheme, not necessarily a DF-based approach. In that case �H must be zero for
a reference structure fitted by the non-SC TB approach, and atomic orbital parameters are
obtained through the fitting procedure. Such an approach is employed to convert the EDTB
method into the SC-EDTB method. After orbital parameters are chosen, ρref (r) is defined as

ρref (r) =
∑

i

∑
{α,β}

Dref
i,{α,β}ϕα(r − Ri )ϕβ(r − Ri ). (4)

Here α and β belong to the same atom, Ri denotes the coordinates of the i th atom, and Dref
i,{α,β}

is a (non-SC) density matrix corresponding to H 0ref. If a minimal sp3 basis set is used, and
the reference structure is a bulk crystal with high symmetry (e.g. diamond, fcc, sc, bcc), the
reference density is composed of identical spherically symmetric atomic densities

ρref (r) =
∑

i

ρatom
ref (|r − Ri |), where ρatom

ref (|r |) =
∑
{α,β}

Dref
α,βϕα(r)ϕβ(r). (5)

If an arbitrary atomic configuration is considered, its density can be represented as

ρ(r) =
∑

i

ρatom
ref (|r − Ri |) +

∑
i

∑
{α,β}

(Di,{α,β} − Dref
α,β )ϕα(r − Ri )ϕβ(r − Ri ). (6)

Here Di,{α,β} is the density matrix corresponding to the Hamiltonian H 0 + �H . We assume
that an atomic configuration composed of electrically neutral atoms, i.e. corresponding to
electron density ρref (r), is described by a non-SC Hamiltonian H 0. �H accounts for the
charge transfer, and its particular diagonal sub-blocks become non-zero when the electron
density of corresponding atoms deviates from ρatom

ref . �H is evaluated self-consistently through
equations (2) and (3), where δρ(r) is the second term in equation (6).
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There are several choices of reference structure because the original EDTB parametrization
was chosen to fit simultaneously DFT band structures for linear,graphite, diamond, sc, bcc, and
fcc carbon lattices. As already mentioned, ρatom

ref is chosen to be fixed rather than environment
dependent. That means that the equation �H = 0 cannot be satisfied simultaneously for
all fitted lattices. Fortunately, if ρatom

ref is evaluated for a diamond lattice, �H appears to be
reasonably small for the other lattices used in the original fitting procedure. Of the periodic
structures used to parameterize the EDTB model for carbon, the linear chain gives the largest
magnitude of non-physical �H . In this case the largest magnitude �H element equals 0.16 eV,
which results in non-physical spectrum line shifts of less than 0.45 eV. Other periodic lattices
have smaller deviations from the reference density, and hence smaller non-physical additions
to the Hamiltonian matrix elements. If a moment decomposition is used for the difference
between the electron densities of sp and sp3 hybridized atoms, the lowest-order non-zero
moment is a quadrupole. Therefore the resulting additional Coulomb potential does not have
a significant effect on the overall system spectrum and charge distribution.

Along with density matrices, which may have non-zero elements if α and β belong to
different atoms, uncompensated Mulliken populations (MPs)

qαβ = Dα,β − Dref
α,β if {α, β} ∈ Same Atom, qαβ = 0 otherwise (7)

are used below. Here Dref
α,β is the non-SC EDTB density matrix in bulk diamond. For carbon,

Dref
s,s = 1.202 85, Dref

px,px = Dref
py,py = Dref

pz,pz = 0.932 38, Dref
α,β = 0 if α �= β. For hydrogen,

Dref
s,s = 1. The MP matrix has the same block-diagonal structure as �H . It contains only those

components of the density matrix that contribute to electron density in the block-diagonal
approximation. Because the MP matrix is sparse it is convenient to represent it as a vector
with ten unique components per carbon atom and one component per hydrogen atom.

The block-diagonal approximation imposed by a convergence acceleration scheme was
assumed when evaluating the Hartree and exchange integrals required for �H . The Hartree
integrals are otherwise evaluated exactly. The exchange integrals are evaluated approximately
as a first-order expansion over an equilibrium electron density. A complete form of the SC
correction then can be written as ({α, β} ∈ Same Atom)

�Hαβ =
N∑

γ=1,δ=1
{γ,δ}∈SameAtom

qγ δ

∫ ∫
ϕα(r)ϕβ(r)ϕγ (R)ϕδ(R)

|r − R| dR dr

+
∑
γ,δ

{α,β,γ,δ}∈SameAtom

qγ δ

∫
ϕα(r)ϕβ(r)ϕγ (r)ϕδ(r)[∂Vex(ρ)/∂ρ|ρ=ρref ] dr. (2a)

Because of the short range nature of the exchange potential, the summation in the last term is
performed only over indices that belong to the same atom as indices α and β. The correction
due to the external electric field with components Ex , Ey, and Ez is

�H external
αβ =

∫
ϕα(r)[Ex(x − x0) + Ey(y − y0) + Ez(z − z0)]ϕβ(r) dr, (9)

where (x0, y0, z0) is the point where the applied potential equals zero.

3.2. Parametrization

A Gaussian basis set is chosen to allow fast analytical evaluation of the Hartree and exchange
integrals. The functional forms for carbon and hydrogen atomic orbitals are given by
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Figure 1. DFT (top) and SC-EDTB (bottom) spectra for cyclic C6 . The line lengths are proportional
to the degeneracy of the levels; short lines correspond to non-degenerate levels. The arrows mark
HOMO states. The C6 ring spectrum as well as all other SC-EDTB spectra shown below are shifted
by EShift = −5.96 eV.

equations (10a) and (10b), respectively:

ϕs = A1 exp(−as1r2) + A2 exp(−as2r2)

ϕpα = 2ap5/4

(
2

π

)3/4

Xα exp(−apr2)
(10a)

ϕH = a3/4

(
2

π

)3/4

exp(−ar2), (10b)

where Xα is either x , y or z. The coefficient A2 is obtained from the normalization condition,
and A1, as1, as2, and ap are chosen to provide the best fit to DFT spectra and charge distributions
of cyclic C6 and a C5 linear chain1. Because the original EDTB method was developed for
pure carbon systems, the parameters E HOnSite, SSσ , and S Pσ used to describe C–H bonds and
parameter a for the ϕH atomic orbital must be defined. No interaction between electrically
neutral hydrogen atoms is assumed.

3.2.1. Carbon orbital parameters. In contrast to DFT, TB schemes usually do not provide
the correct absolute values for eigenvalue spectra. The correct positioning of the spectrum on
an absolute scale is not necessary if only the total energy or forces are desired. Adding the
appropriate constant to the TB repulsive term can compensate the constant displacement for
each spectrum line. However, the correct absolute position becomes crucial if TB and DFT
spectra matching is used to define TB orbital or bond parameters. The first step is to obtain
the value of constant shift EShift to be added to every EDTB spectral line to obtain the best fit
to a corresponding DFT spectra. The goal of this parametrization is to obtain the electronic
properties of the system rather than total energies. For that reason, matching both occupied
and unoccupied levels is emphasized, at least in the vicinity of the Fermi energy. To optimize
EShift , the weighted squared differences between the EDTB and DFT spectra for cyclic C6 are
minimized. The highest weights were assigned for levels lying near the HOMO and LUMO
orbitals, lower weights for other occupied levels, and the lowest weights for high unoccupied
levels. The resulting value of EShift is −5.96 eV. Plotted in figure 1 are DFT and SC-EDTB
spectra for cyclic C6, where the latter is shifted by EShift .

The next step is to find the A1, as1, as2, and ap coefficients for the carbon orbitals
(table 1). These parameters were obtained by matching the C5 linear chain and cyclic C6 MPs

1 CERIUS2 4.0 by Molecular Simulations, Inc. was used to compute the DFT electronic structure using the builders:
ADF.
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Table 1. Optimized carbon orbital parameters. as1, as2, and ap are in Å−2. To conserve orbital
normalization, high precision is given for these parameters; however, only the two first significant
digits have physical meaning. The parameter choice is not unique as the target function is not
unique.

A1 A2 as1 as2 ap

0.082 156 45 0.598 0878 0.112 9953 1.500 468 1.608 523

Table 2. MPs for a C5 linear chain in external electric fields of different magnitudes. The
SC-EDTB values were obtained with the parameters given in table 1.

Field (V Å−1) Method Atom #1 Atom #2 Atom #3 Atom #4 Atom #5

0.000
SC-EDTB −0.067 0.231 −0.329 0.231 −0.067
DFT −0.001 0.095 −0.188 0.095 −0.001

0.514
SC-EDTB 0.030 0.235 −0.327 0.224 −0.162
DFT 0.122 0.129 −0.196 0.055 −0.111

1.028
SC-EDTB 0.128 0.236 −0.322 0.215 −0.256
DFT 0.236 0.146 −0.192 0.024 −0.214

1.542
SC-EDTB 0.227 0.234 −0.314 0.202 −0.348
DFT 0.353 0.156 −0.185 −0.011 −0.312

2.056
SC-EDTB 0.326 0.229 −0.303 0.187 −0.438
DFT 0.474 0.159 −0.175 −0.052 −0.405

2.571
SC-EDTB 0.426 0.221 −0.288 0.168 −0.526
DFT 0.597 0.157 −0.162 −0.098 −0.494

Table 3. Dipole moment and energy decrease for a C5 linear chain when it is placed in a
2.571 V Å−1 external electric field.

SC-EDTB DFT Relative error (%)

Dipole moment 2.51 eÅ 3.60 eÅ 30
Energy decrease −3.21 eV −4.56 eV 30

and SC-EDTB spectra lines (shifted by EShift) to their DFT counterparts. The target function
also includes linear C5 squared atomic MP deviations for various applied fields. The field is
directed along the chain and its magnitude has six different values: 0.0, 0.514, 1.028, 1.542,
2.056, and 2.571 V Å−1 (table 2). In addition, separate values of MP for s- and p-orbitals for
cyclic C6 are matched. Table 3 compares the response of DFT and SC-EDTB models to the
applied electric field for linear C5.

3.2.2. Hydrogen and C–H bond parameters. To complete the parametrization, the hydrogen
orbital coefficient a (10b), and C–H bond parameters E HOnSite, SSσ , and S Pσ together with
their scaling function must be defined. The scaling functions for SSσ , and S Pσ are taken from
the work by Davidson and Pickett [25]. This function reproduces the DFT dependence of
occupied eigenlevels versus C–H bond length in methane. At the same time a choice must be
made for E HOnSite, SSσ , and S Pσ because these parameters complement the SC corrections.
In addition, the values for E HOnSite, SSσ , and S Pσ given by Davidson and Pickett lead to the
wrong signs for MPs for C–H bonds; carbon appears to be less electronegative than hydrogen.

To optimize a, E HOnSite, SSσ , and S Pσ , a target function is built that fits MPs and
eigenvalue spectra for benzene, methane, and ethane. The target function also includes a
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Figure 2. Methane (top), ethane (centre), and benzene (bottom) spectra. The upper portion of each
plot shows the DFT spectrum, the lower portion shows the SC-EDTB results.

Table 4. Optimized hydrogen orbital exponential coefficient (Å−2), and C–H bond parameters
(eV).

a E HOnSite SSσ S Pσ

2.741 01 3.520 45 −3.331 11 5.492 73

Table 5. MPs for carbon atoms in hydrocarbon molecules.

Methane Ethane Benzene

SC-EDTB DFT SC-EDTB DFT SC-EDTB DFT

MP s-orbital 0.334 0.266 0.240 0.252 0.083 0.167
MP p-orbital 0.507 0.815 0.328 0.592 0.121 0.140
MP Total 0.840 1.081 0.568 0.844 0.203 0.307

subfunction for fitting MPs in a small hydrogen-passivated diamond cluster with {111} and
{100} facets2. Spectra moments fitting for benzene and eigenlevel fitting for methane and
ethane is performed. The optimized values of a, E HOnSite, SSσ , and S Pσ are given in
table 4. Table 5 compares MPs for hydrocarbon molecules obtained from SC-EDTB and
DFT simulations. The values from tables 1 and 4 were used to obtain molecular (figure 2)
and hydrogen-passivated diamond clusters spectra (figure 3). The electron affinity value
for the hydrogenated nano-diamond particle can be read directly from the energy spectrum

2 CERIUS2 4.0 by Molecular Simulations, Inc. was used to compute the DFT electronic structure using the builders:
DMOL3.
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(b)

(a)

Figure 3. Properties of a hydrogen-passivated diamond cluster (inset) composed of 34 carbon
atoms. (a) SC-EDTB (top) and DF (bottom) spectra. In addition to EShift the bulk spectrum (solid
line) was shifted by 1.6 V average Coulomb potential experienced by carbon atoms in the cluster
(cf figure 3(b)). Note that the DF underestimates the bandgap for bulk diamond by approximately
1.0 eV. (b) Coulomb potential profile along 〈001〉 and 〈111〉 lines passing through the centre of
mass of the cluster. The vertical lines mark cluster facets.

plot in figure 3. Experimental [26], SC-EDTB, and DFT [27] electron affinities for a {111}
hydrogenated surface are −1.27, −1.4, and −2.03 eV, respectively. The plot in figure 3(a)
and all potential plots below depict the Coulomb potential associated with the difference
ρ(r) − ρref (r) given by the second term in equation (6) rather than with the total electron
density ρ(r). Subtraction of ρref (r) eliminates short-range potential oscillations produced by
single atoms and makes the long-range potential component clearly visible.

4. NEGF and convergence acceleration scheme

The NEGF formalism allows one to compute the density matrix for finite-size systems that are
connected to semi-infinite periodic leads under an arbitrary bias [2]. For simplicity we assume
that the two leads (‘left’ and ‘right’) of the same type are connected to the system. They have
the same Fermi level µ0 if no external bias is applied. The left lead is externally biased by
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Figure 4. I–V curves. The solid curve corresponds to the SC Hamiltonian H = H 0 + �H , and
the dashed curve to the non-SC Hamiltonian H = H 0.

+�VL; the right lead by −�VR. The retarded Green function matrix G(ε) is

Gα,β (ε) = ({[ε + iη]I − [H + �L(ε − �VL) + �R(ε + �VR)]}−1)α,β . (11)

Here �L(R) is the self-energy of the left (right) lead, I is the identity matrix, and H = H 0+�H
is the Hamiltonian of the system. The density matrix D is obtained through integration over
ε:

Dα,β = − 2

π

{∫ ∞

−∞
f (ε − �VL)G(ε) · Im[�L(ε − �VL)] · G∗(ε) dε

}
α,β

− 2

π

{∫ ∞

−∞
f (ε + �VR)G(ε) · Im[�R(ε + �VR)] · G∗(ε) dε

}
α,β

. (12)

Here f denotes the Fermi function. To facilitate numerical computation most of the integration
in (12) is performed in the upper complex half-plane [1]. The concept of the Newton–Raphson
algorithm, however, does not depend on the shape of the integration contour. For clarity we
assume that equation (12) is used for the evaluation of the density matrix.

The block-diagonal matrix �H can be viewed as a double-indexed vector, in the same
fashion as MP. If approximation (2a) is used, �H is a linear function of input MPs qIn. U
denotes the matrix of coefficients, which relate �H and MP: �H = U ·qIn. Suppose that δqIn

is a variation of qIn. The variation of output MPs is obtained by differentiation of equations (11)
and (12). For example, the first-order variation of the first term integrand in equation (12) is

δ{G(ε) · Im[�L(ε − �VL)] · G∗(ε)} = G(ε) · δH · G(ε) · Im[�L(ε − �VL)] · G∗(ε)
+ G(ε) · Im[�L(ε − �VL)] · G∗(ε) · δH · G∗(ε), (13)

where δH is a block-diagonal square matrix. Taking into account the linear relationship
between δH and δqIn, we obtain

δqOut = A · δqIn. (14)

The complete expression for matrix A is too long to be presented here, but its computation is
straightforward. The cost of computation of A is O(M2) per sampling point. Here M is the
length of the MP vector. Given equation (14), the self-consistency condition can be expressed
as

qOut + A · δqIn = qIn + δqIn. (15)

Here qIn and qOut are known vectors denoting input and output MPs, respectively, in the current
SC iteration. Equation (15) is solved for δqIn during each iteration. The next iteration input
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Figure 5. Current density in the polyacene–nano-diamond structure under a 1.0 V external bias.
The maximum arrow size corresponds to 0.014 µA.

density is taken as qIn +δqIn. Solving the linear system (15) for δqIn requires O(M3) operations.
Therefore the total cost of the Newton–Raphson algorithm is O(M3)+ NSPO(M2) per iteration;
NSP is the number of sampling points on the integration contour.

5. Case study: resonant tunnelling device

We consider the structure shown in figures 5–8, which is composed of a 29-atom nano-diamond
particle connected to two semi-infinite polyacene leads. Five unit cells for each lead are also
considered as part of the system. That brings the total number of atoms in the system to 89. The
unpassivated nano-diamond particle is metastable, and reconstructs to an onion-like fullerene
structure if complete relaxation is allowed. The unreconstructed particle has a very small
HOMO–LUMO gap, and its metallic behaviour originates from the surface states. Although
artificial, this system is a good demonstration of a non-equilibrium voltage drop in a completely
metallic system.

The total number of orbitals N equals 296 and the size M of derivative matrix A equals
710. Energy integration was performed along the contour similar to the contour shown in [1].
The number of integration points, however, was much greater than in [1]. A large number
of sampling points, most of which lie on the real axis portion of the contour, is crucial for a
correct density evaluation. A minimal basis set and efficient SC convergence procedure allows
more than 600 integration points in the current example.

The current between orbitals α and β is evaluated as [3]

Jα,β = −2e2

h̄
Im(Dα,β)Hα,β, (16)

where H = H 0 + �H is a self-consistent Hamiltonian, and D is a non-equilibrium density
matrix obtained through equation (12). Plotted in figure 4 are I–V curves for SC and non-
SC Hamiltonians. Figure 4 serves as a demonstration of how important self-consistency can
be for non-equilibrium simulations dealing with metallic systems. Figure 5 illustrates the
current density for a non-resonant applied bias �VL + �VR = 1.0 V. The interatomic current
is depicted by arrows; the maximum size arrow corresponds to 0.014 µA. Figure 6, which
is zoomed-out portion of figure 5, shows that under non-resonant bias the nano-diamond
particle conducts through its surface states. Figure 7 illustrates the current density under a
resonant bias �VL + �VR = 0.41 V. The scaling in figure 7 differs from figures 5, 6: the
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Figure 6. Zoomed-out portion of figure 5. Under non-resonant conditions the cluster conducts
through the surface states.

Figure 7. Current density in the polyacene–nano-diamond structure under resonant conditions.
The external bias equals 0.41 V. The maximum arrow size corresponds to 0.31 µA.

maximum size arrow corresponds to 0.31 µA. Under resonant bias the nano-particle acts
like a resonant cavity. The current density inside the cavity substantially exceeds the current
density in the leads. Figures 8, 9 illustrate the Coulomb potential distribution associated with
the ρ(r) − ρref(r). Marginal regions depict the Coulomb potential associated with perfect
leads and shifted by either �VL or by −�VR. A small potential discontinuity can be seen at
the right system boundary. It is due to the finite system size. When the system size increases
through incorporation of longer lead segments, the potential step disappears.

The polyacene conductivity comes from π-bonding states. Occupied and unoccupied
π-dispersion curves touch each other at the Brillouin zone boundary. Under a negligibly small
applied bias, conductivity originates from the largest k-vector state kmax

∼= 1.35 Å−1 (figure 10).
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Figure 8. Coulomb potential distribution under 1.0 V external bias.

Figure 9. Coulomb potential along the x-axis, which coincides with the polyacene symmetry axis.

kmax corresponds to a half-wavelength equal to the longitudinal size a of the polyacene unit
cell. As the applied bias is being increased, states with shorter k-vectors can participate in
the conduction. The resonant bias voltage (0.41 V) corresponds to the {1.12, 1.35} Å−1 range
of k-states participating in conduction (cf figure 10). The half-wavelength of these states lies
in the range {a, 1.2 a}. On the other hand, the ‘gap’ between the two polyacene leads is
1.68 a (cf figure 7), which means that the resonance condition for the entire cluster is not
met. As follows from figures 8, 9, the potential inside the nano-particle has a complex internal
structure. It is reasonable to assume that the resonant condition is met with respect to a certain
potential feature inside the nano-particle, rather than the nano-particle as a whole. Figure 9
illustrates one of such possibilities. At the same time the complexity of the current pattern and
potential profile shows that quantitative resonant conditions can neither be determined from
device geometry nor from an equilibrium potential distribution.

6. Conclusions

The non-self-consistent EDTB for carbon was extended to a self-consistent DF-like scheme.
Extra parameters required for the SC correction and for C–H bonds were determined by
matching MPs and SC-EDTB spectra to their DFT analogues. To illustrate SC-EDTB
capabilities, a resonant tunnelling device was considered. The calculations indicate a
pronounced resonant effect and negative slope region in the I–V curve.

The accuracy of the method is comparable to the overall accuracy achieved by means of
NEGF techniques. Because most NEGF techniques are not exact, there may be no compelling
reason for using an ab initio scheme with a precision that supersedes the overall quality of the
method used to evaluate the electron current. Therefore the SC-EDTB method is a reasonable
trade-off between fast but non-self-consistent tight binding, and sometimes unnecessarily
precise and computationally expensive DFT calculations. Orthogonal atomic orbitals are
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Figure 10. Polyacene SC-EDTB dispersion curves. The energy scale is shifted upwards by 5.96 eV.

assumed so that a Newton–Raphson algorithm for nonlinear systems of equations can be
efficiently used to achieve self-consistency. Finally, we believe that employing an environment
dependence for atomic orbitals and the atomic density matrix Dref

α,β can substantially enhance
the precision of SC-EDTB.
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